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Velocity and tempera tu re  distributions are  obtained for 0 -< Ra _< 2" 10 5 and var ious  ra tes  of 
t r ansve r se  flow in a ver t ical  cavity with permeable  lateral  wails. 

The existing analytical studies of thermal  convection in a closed ver t ical  cavity have been ca r r i ed  out 
for the case of impermeable  la teral  wails [1-7]. 

We consider  plane convective motion of a viscous incompressible  fluid in a closed ver t ical  cavity with 
permeable  la teral  wails, an aspect  ratio l = H / L  and a constant la tera l -wal l  t empera ture  (Fig. 1). 

We use the tempera ture  at the ver t ica l  wall at x = 0 as a zero point and the tempera ture  is 0 w at the 
wall at x = L. The tempera tu re  va r i es  l inearly along the lower base at y = 0 and along the upper base at 
y = H. Gravity is directed ver t ica l ly  downwards. 

The ver t ical  sur faces  of the cavity are  assumed to be permeable .  Uniform injection of the fluid at a 
constant rate along the y axis occurs  through the surface at x = 0 and uniform suction at the same rate takes 
place through the surface at x = L. 

The equations of motion for  the s t r eam function ~b and the tempera ture  function 0, written in dimen- 
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s ionless  form,  are  

In Eqs. (1) and (2), the following scale fac tors  are  assumed for  the var iables :  distance, cavity width 
L; time, L2/a;  t empera ture ,  0w; s t r eam function, a. The dimensionless  c r i t e r i a  appearing in the equa- 
tions are  the Rayleigh and prandt l  numbers;  

R a =  g[]OwL3 Pr = V 
'~a a 

The dimensionless  velocity of the fluid is associa ted with the s t r eam function through the relat ions 

Vx = ar vu = -  a____r162 
@ ' ax ' 

and the Poisson  equation for  the vor t ic i ty  takes the fo rm 

- -  h ~  = % 
(3) 

We consider  a s tat ionary solution of the equation sys tem (1)-(3), i . e . ,  a solution for  which the time 
derivat ives of the functions ~ and 0 are  zero.  To obtain a s tat ionary solution, the l imiting method is used, 
i. e . ,  a limiting solution of the nonstat ionary sys tem (1)-(3) is sought which is independent of the t ime t to a 
given accuracy.  
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Fig. 1. Coordinate s y s -  
tem. 

Further ,  in  o rder  to make the calculations with respect  to each of Eqs. 
(1)-(3) identical, the t e r m  8r is added to Eq. (3) and this equation is r e -  
placed by 

04 
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It should be noted that introduction of the t e r m  Or avoids the need for  
a separate  iterative p rocess  for  solution of the Poisson equation in each time 
of the main iterative procedure.  

Thus the initial sys tem (1)-(2) is replaced by 

1 &p O0 1 (04 O~ 04 O(p) 
Pr' Or = A c p + R a  Ox Pr  --~y c)x Ox O y , "  (4) 

00 _AO_(0~y 0o 04 0o) (5) 
Ot Ox Ox Oy ' 

or 
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with the boundary conditions 

o = 0 ,  0_~_.r = o ,  ~  for x = 0 ,  
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0 = 1 ,  04 =0 ,  04 _ C for. x =  1, (7) 
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In the boundary conditions, the constant C is the Peelet  number, which defines the intensity of the t r a n s -  

ve r se  flow: 

P e =  v.,L 
a 

The method of finite differences is used to obtain a numerical  solution of the sys tem (4)-(6) under the 

boundary conditions (7). 

In the region of integration, we introduce a space-- t ime grid with the mesh points 

-rl =: ih (i-= O, l, 2 . . . . .  n), 

yj = js ( ] = 0 ,  1, 2 . . . .  , m), 

t h = k x  ( k = O ,  1, 2 . . . .  ), 

where h = 1/n is the spacing along the x axis; s = 1 /m is the spacing along the y axis; ~- is the time step. 

We write Eqs. (4)-(6) in f ini te-difference form by replacing all differential express ions  by finite- 

difference relat ions:  difference relations: 
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In Eqs. (8)-(10), the Laplacians Aq~k,j and Aoikj are  approximated by 

Aft. = h+,,~ + h - , . - -  2h,/ ~ hj+, + h . - ,  -- 2h,i 
h = s ~ 
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(9) 

(1o) 
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In f ini te-difference form,  Eq. (3) becomes 

2~,, 
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The boundary conditions (7) take the form 

0 o , / : 0 ,  O n , ~ :  1, O~,o : O~,m : ih, 

q~,o = ~,,~ = O, q>o,: = %,:  = Cjs, 

i = 0 ,  1 . . . . .  n; j = O ,  1 . . . . .  nz. 

i : 1 ,  2, . . . ,  n - - I ,  

] = t ,  2 ,  . . . .  m - - 1 .  

(11) 

(12) 

A stat ionary solution of the sys tem (8)-(10) under the boundary conditions 
(11)-(12) is real ized through the following i terative procedure.  Values of r and 
0 are  assigned at boundary mesh points on the basis  of the conditions (12). We 
fur ther  assume ~o, ~, and 0 are  zero at all in te r ior  mesh points. On the basis  
of these values,  values of the function ~0 at the boundary mesh points are  ca l -  
culated f rom Eqs. (11). The resultant  sys tem of values for  ~b, 0, and ~0 at all 

Fig. 2. Streamlines  the mesh points (except the ver t i ces  of the region) is taken as the zeroth i t e ra -  
in a cavity for Ra tion. The i terative step involves the calculation of the quantities ~k+l, 0k+l, and 
= 6.8.104, H / L  = 6.6; ~o k+l at all the internal mesh points f rom the values of $, 0, and q~ by means of 
a) Pe = 0; b) Pe  = 2. Eqs. (8)-(10). Following this, ~0 k+l at the boundary mesh points is calculated 

f rom Eqs. (11). This i terat ive procedure  is repeated until the conditions 

icpk-}-i __ (ff[~,: ~ ~, ]Ok+~ k k - -  0 I~,: < ~, I~ k+~ - -  ~ l.: < ~, 

are satisfied in two success ive  i terations,  where e is the required degree of accuracy  of the solution. 

The t ime step was selected on the basis  of the convergence conditions for  the method. T h e  main ca l -  
culations were ca r r i ed  out on a 21 x 21 gr id  with r = 1/4000 and e = 0.001. To check the accuracy  of the 
calculations,  a number  of vers ions  were calculated for 21 x 41 and 21 x 101 meshes  to third o rder  accuracy.  
The i terative procedure  continued to be convergent  with the f i rs t  three numbers  af ter  the decimal point r e -  
maining unchanged but the number  of i terat ions rose  to 2000. 

The quality of the difference mode was checked by the behavior of the deviation in each i terative step. 
The computation was ca r r i ed  out until the deviation became less  than e = 0.000976. A stat ionary solution 
was real ized for vers ions  in which the deviation fell monotonically. For  Ra > 2- 105, the behavior of the 
deviation changed markedly  and its value began to oscillate.  In this case,  the values of the functions r and 
0 in the wall regions var ied  continuously. In all probability, such behavior of the functions r and 0 was con-  
nected with the development of smal l - sca le  pulsed motions in the wall region and the production of a s ta-  
t ionary solution became impossible in principle.  

All the calculat ions were per formed on the Razdan computer .  

Stationary solutions were obtained for  the following pa ramete r  values, which define flow and heat 
t ranspor t :  Ra = 5 . 1 0  2, 103, 5" 10 3, 6.8" 10 4, 10 5, and 2" 105; Pe  = 0.1, 2, 3, and 5; H / L  = 0.5, 1, 2, 4, 
6.6, a n d l 0 ;  P r =  1. 

The resul ts  presented were obtained for  the ease of injection into the cold wall and suction f rom the 
heated wall. A number  of calculat ions were per formed for the opposite t r ansve r se  flow direction (injec- 
tion into the heated wall and suction f rom the cold wall). Calculations for both cases  showed that a dis-  
placement of the velocity and tempera ture  fields in the cavity f rom their  posit ions for  Pe  = 0 in the d i r ec -  
tion of the wall to which suction was applied occur red  under the influence of the t r ansve r se  flow. F u r -  
thermore ,  injection (suction) through the heated wall had the same effect on flow and heat t r ans fe r  in the 
wall region as injection (suction) through the cold wall. 
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Fig. 3, Dimens ion less  t e m p e r a t u r e  in the cen t ra l  ve r t i ca l  section of the 
cavity:  1) P e = 0 ;  2) 1; 3) 2; 4) 3. 

Fig. 4. Effect  of wall pe rmeab i l i ty  on heat t r a n s f e r  in a cavity.  Poin ts  
a re  obtained f r o m  the p resen t  numer ica l  calculat ions.  

F r o m  the calculat ions of the veloci ty  and t e m p e r a t u r e  fields,  a sys temat ic  shift of the flow and hea t -  
t r a n s f e r  modes  was obse rved  depending on the Rayleigh number  and the ra t io  of the sides,  and the effect of 
wall pe rmeab i l i ty  on the flow and h e a t - t r a n s f e r  s t ruc tu re  was a lso  determined.  

The r e su l t s  of the calcula t ions  for  the absence of t r a n s v e r s e  flow, Pe  = 0, is not d iscussed  in detail  
because  this  p rob lem was solved previous ly  [4, 6, 7]. 

With t r a n s v e r s e  flow presen t ,  a nonzero  t r a n s v e r s e  component  of the veloci ty  appea r s  at the la te ra l  
walls of the cavity.  In this  case ,  convective motion in the cavi ty  resu l t s  not only f r o m  gravi ta t ional  f o r ce s  
but also f r o m  t r a n s v e r s e  flow at constant  veloci ty.  Because of ve ry  low ve loc i t ies  in the boundary l aye r  
during natura l  convection, the t r a n s v e r s e  per tu rba t ions  have a r a the r  s t rong influence on flow and heat  
t r ans fe r .  The effect  of t r a n s v e r s e  flow on the flow s t ruc tu re  for  Ra = 6 .8 .10  4 is shown in Fig. 2b. The 
s t r eaml ines  obtained give a r ep resen ta t ion  of the nature  of the overa l l  motion a r i s ing  as  the resu l t  of the 
superposi t ion of t r a n s v e r s e  flow on f r ee  convect ive motion. It is c l ea r  f r o m  the f igure that t r a n s v e r s e  
flow reduces  the intensity of c i r cu la to ry  motion and dis turbs  the s y m m e t r y  of the flow; in this  case ,  the 
s t r eaml ine s  a re  displaced somewhat  toward the wall where suction is applied. 

Analys is  of the flow fields obtained showed that the degree  of deformat ion of f r ee  convect ive motion 
under  the influence of a t r a n s v e r s e  flow (for fixed veloci ty  of the t r a n s v e r s e  flow) depends on the Rayleigh 
number .  

F o r  weak convection the ve loc i t i es  a re  low, which leads  to s t rong d isp lacement  of the main  flow by 
the t r a n s v e r s e  flow. In this case ,  the slow movement  of gas along c losed t r a j e c t o r i e s  is p r e s e r v e d  only in 
the upper  half of the cavity.  

As the Rayletgh number  inc reases ,  the veloci ty  of f r ee  motion r i s e s  and the effect  of the t r a n s v e r s e  
flow drops.  F o r  la rge  Rayletgh numbers  and t r a n s v e r s e  flow, c i r cu la to ry  motion continues to be maintained 
over  the g r e a t e r  port ion of the cavity (Fig. 2b). 

Analys is  of the r e su l t s  of the numer ica l  computat ion made it poss ib le  to es tab l i sh  that with an in-  
c r e a s e  in the intensity of t r a n s v e r s e  flow, the veloci ty  prof i le  at the cold wall (injection) becomes  l e s s  
complete ,  the veloci ty  m ax i m um  is reduced,  and i ts  coordinate  is moved away f r o m  the wall. At the heated 
wall (suction), the veloci ty  prof i le  becomes  m o r e  complete ,  its m a x i m u m  is a lso  reduced,  and it is d i s -  
p laced toward the wall. 

Injection lowers  the t e m p e r a t u r e  gradient  at the wail, which leads  to weakening of heat  t r ans fe r .  
Suction has the opposite effect  - -  the gradient  at the wall is inc reased  leading to balancing and in tens i f ica-  
t ion of heat  t r a n s f e r .  

F igure  3 shows the var ia t ion  of the d imens ionless  t e m p e r a t u r e  in the cen t ra l  ve r t i ca l  section of the 
cavity under the influence of t r a n s v e r s e  flow with Ra = 6.8- 10 4. Depending on direction,  the t r a n s v e r s e  
flow reduces  or  i n c r e a s e s t h e  t e m p e r a t u r e  in the cen t ra l  ve r t i ca l  section. The deviation of this t e m p e r a -  
ture  f r o m  the initial value for  Pe  = 0 i n c r e a s e s  as the veloci ty  of the t r a n s v e r s e  flow inc reases .  
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The total  t h e r m a l  flux (per unit length along the y axis) is  de te rmined  by the distr ibution of the local  
va lues  and is 

H 

q = - z.fj aT (__0~x)w dy. (13) 
0 

The d imens ion less  N u s s e l t n u m b e r  n o r m a l i z e d  to the width of the cavi ty  is 
H/L 

Nu L QL 1 t" ~ dO I dg Z e 
~0 w -- H / L .  ~-O-X-,]~ = - ~ ( .  (14) 

0 

The ach ievement  of t h e r m a l  balance (Qx=L = Qx=0) was checked in the s ta t ionary  mode with t r a n s -  
v e r s e  flow absent .  The deviation in the total  balance was no m o r e  than 3% for  a 21 • 21 mesh.  

With t r a n s v e r s e  flow p re sen t ,  the equation of t he rma l  balance wri t ten in d imens ion less  f o r m  is 

(NOL)x= 1 @ (NUL)x= 0 @ Pe = 0. (15) 

The amount of influence of t r a n s v e r s e  flow on heat  t r a n s f e r  through the cavi ty  in accordance  with the 
r e su l t s  of the ana lys i s  of the numer i ca l  computat ion and f r o m  a compar i son  with exper imen t  can be taken 
into account by the d imens ion less  pe rmeab i l i t y  p a r a m e t e r  ~? = Pe  7t/~e which c h a r a c t e r i z e s  the ra t io  be -  
tween the amount  of heat  t r anspo r t ed  by the t r a n s v e r s e  flow and the amount  of heat  t r a n s f e r r e d  by the 
equivalent  t h e r m a l  conductivity.  

The var ia t ion  of heat  flow through a cavi ty  assoc ia ted  with the injection p r o c e s s  in the Ra and Pe  
range  cove red  is approx imated  by 

Nu L ~1 

NUL, exp 11 - -  1 (16) 

Curves  of the re la t ion  (16) a r e  shown in Fig.  4. 

The d imens ion less  t e m p e r a t u r  e in the cen t ra l  ve r t i ca l  sect ion of the cavi ty  including the effect  of 
t r a n s v e r s e  flow is given by 

( 0 w = ( 1 - -  0:29~1) 0,251+ 0.5 ~ . (17) 

When ~--~ 0, the inde te rminacy  in Eq. (16) can be r emoved  by use  of L 'Hop i t a l ' s  ru le .  After  s imple  
t r an s fo rma t ions ,  Eq. (16) t r a n s f o r m s  into the usual  fo rmula  for  the calculat ion of heat  t r a n s f e r  through a 
ve r t i c a l  l aye r  with i m p e r m e a b l e  l a t e ra l  wai ls .  

X 

Y 
Vx~ Vy 
T 
0 = (T--TI)/(T2--T1) 
P, X, a, ~, oz 

g 
H, L 

~e 
r 
t 
Ra = g/~0wL3/va, 
Q 
Nu L = QL/X0 w 
l = H / T ,  

n = Pe  (k/~e) 
V w 

0 w = T2--T1. 

P r  = v/a, Pe  = v w L / v  

NOTATION 

is the longitudinal coordinate;  
is  the t r a n s v e r s e  coordinate;  
a r e  the p ro jec t ions  of the veloci ty  on the x and y axes;  
is the t e m p e r a t u r e ;  
is the d imens ion less  t e m p e r a t u r e  of the layer ;  
a r e  the k inemat ic  v i scos i ty ,  the t h e r m a l  conductivity,  the t h e r -  
mal  diffusivity,  the volume expansion, and the heat  exchange,  
respec t ive ly ;  
is the acce le ra t ion  due to gravi ty;  
a r e  the height and width of the cavity;  
is the equivalent  t h e r m a l  conductivity; 
is the d imens ion less  flow function; 
is  the t ime; 
a r e  the Reyleigh,  Prandt l ,  and Pec le t  numbers ;  
is the total  heat  flux pe r  unit length along the y axis; 
is the Nusse l t  number ;  
is the d imens ion less  length; 
is  the d imens ion less  pe rmeab i l i t y  p a r a m e t e r ;  
is the injection (suction) veloci ty  at the side su r f ace s  su r f aces  
of the cavity;  

407 



S u b s c r i p t s  

L 
m 
0 

1, 
2. 
3. 
4. 
5. 

6, 
7. 
8. 

denotes mean value; 
denotes value at centra l  ver t ica l  section; 
denotes value on impermeable  surface .  
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